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Abstract
Control Flow Graphs (CFG) play a significant role as an

intermediary analysis in many advanced static and dynamic
software analysis techniques. As firmware security and val-
idation for embedded systems becomes a greater concern,
accurate CFGs for embedded firmware binaries are crucial
for adapting many valuable software analysis techniques to
firmware, which can enable more thorough functionality and
security analysis. In this work, we present a portable new dy-
namic CFG recovery technique based on dynamic forced exe-
cution that allows us to resolve indirect branches to registered
callback functions, which are dependent on asynchronous
changes to volatile memory. Our implementation, the Forced
Firmware Execution Engine (FFXE), written in Python using
the Unicorn emulation framework, is able to identify 100%
of known callback functions in our test set of 36 firmware
images, something none of the other techniques we tested
against were able to do reliably. Using our results and ob-
servations, we compare our engine to 4 other CFG recovery
techniques and provide both our thoughts on how this work
might enhance other tools, and how it might be further de-
veloped. With our contributions, we hope to help enable the
application of traditionally software-focused security analysis
techniques to the hardware interactions that are integral to
embedded system firmware.

1 Introduction

Embedded systems are heavily relied upon in nearly every
aspect of our daily lives, from the keyboards we use on a
day-to-day basis, to the programmable logic controllers that
coordinate complex manufacturing processes, to the medical
imaging devices found in our hospitals. For many of these
applications, system safety and security are of critical im-
portance. A crucial component of realizing this is firmware
verification and vulnerability analysis, which is unfortunately
lacking in many modern systems [45]. As a specialized form
of software, firmware images can theoretically be analyzed

with traditional software analysis techniques. However, this
is often difficult in practice due to fundamental differences
between firmware and software. Nonetheless, if software anal-
ysis techniques can be reliably adapted to firmware, there
could be significant improvements in the security, trust, and
assurance of embedded systems.

In this paper, we focus on Control Flow Graph (CFG) recov-
ery as an important enabling step for applying more complex
software analysis to monolithic bare-metal binary firmware
images. We present the Forced Firmware Execution Engine
(FFXE), which leverages the original dynamic forced exe-
cution algorithm [48] to enable the resolution of indirect
branches whose targets are determined asynchronously. Such
branches often arise from callback function registration, a
programming archetype that occurs ubiquitously in embed-
ded systems development. To accomplish this, we introduce
several additional stages to the original technique that allow
us to resume execution from instructions that access volatile
memory when a potential branch target is written to the same
location. Our prototype is implemented as a manager class
designed to handle the additional context information needed
to track volatile memory accesses, as well as execution thread
state. Our code artifacts are publicly available on GitHub. 1

Our paper is outlined as follows: the rest of this section
gives a high-level overview of the motivations for this work
and a summary of our contributions; Sections 2 and 3 provide
further background on CFG recovery techniques and related
work; Section 4 details the design and implementation of our
technique; in Sections 5 and 6 we present and discuss our
results; and finally in Sections 7 and 8 we discuss future work
and make our final remarks.

A CFG is a graph representation of all of the possible
execution paths that might be taken through a program [3].
The vertices of a CFG are called basic blocks, which are
contiguous sets of sequentially executing instructions that
have a single entry point and exit point. Exit points are con-
trol flow instructions that can alter the value of the program

1https://github.com/rchtsang/ffxe
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Figure 1: CFG Recovery Example.

counter, typically function calls, function returns, or condi-
tional branches. The edges of the CFG represent the branch
targets of the basic block’s last instruction and are therefore
directed. A small example of a CFG for a single function
can be seen in Figure 1. CFGs are valuable structures for
program analysis and are used in many applications like ver-
ification [5, 8, 15, 18, 23, 47], data flow analysis [2, 43], and
malware detection [1,10,19,27,28,30,32]. As embedded and
cyber-physical systems continue to grow in ubiquity, such
techniques have become increasingly necessary for ensuring
the security of the firmware that drives them.

As already mentioned, it is often difficult in practice to
apply software analysis techniques to the firmware. This is
because, by nature, firmware code is strongly coupled to the
hardware that it is written for. While software usually ab-
stracts hardware interactions through the operating system
and concerns itself only with application behavior, bare-metal
firmware must manage both application and hardware, since
hardware dependencies are often directly referenced through
memory-mapped input/output (MMIO). Moreover, MMIO
references are usually linked to hardware events that have a
direct effect on firmware control flow, making execution paths
unpredictable based on syntax alone.

In particular, embedded systems tend to interact with the
physical environment through hardware peripherals like sen-
sors and actuators. Thus, firmware tends to have a high degree
of asynchronicity, as interrupts and interrupt service routines
(ISRs) often play critical roles in responding to external events
triggered by peripherals. An ISR is typically a programmer-
defined function that gets registered to a particular event.
When that event occurs, an interrupt is triggered that stops the
current thread of execution, switches context to the registered
ISR, and executes it. When the ISR thread finishes executing,
the processor context is restored to the point of interrupt and
continues with the main thread of execution. This complicates
many analyses because values can change unpredictably from
a given thread’s point of view. These values are considered
volatile and may need to be handled differently depending on
their underlying hardware dependency.

These differences between software and firmware limit the
effectiveness of existing CFG recovery techniques, as existing
techniques are designed primarily for serial software and fail
to account for asynchronicity that arises due to hardware de-

pendency in firmware. In this paper, we address some of these
challenges by building upon existing techniques to enable
greater support for firmware CFG recovery. Our contributions
can be summarized as follows:

• We present a portable dynamic algorithm for CFG recov-
ery, designed specifically to handle indirect branches that
are affected by interrupt-based asynchronicity (volatile
memory).

• We implement and evaluate a prototype of our algorithm,
the Forced Firmware Execution Engine (FFXE).

• We demonstrate FFXE’s effectiveness at resolving in-
direct branches whose targets are dependent on asyn-
chronous memory writes (registered callback functions).

• We compare our prototype’s performance against several
CFG recovery techniques, including a reimplementation
of the original dynamic forced execution algorithm.

2 Background

2.1 Control Flow Graph Recovery
Naturally, a complete control flow graph (CFG) can be con-
structed trivially from the syntax of the program’s source
code, as all paths are inherently enumerated by the program-
mer. However, while such CFGs are useful in many cases,
due to compiler optimizations in compiled languages, they
do not always accurately reflect the actual control flow of the
compiled binary. As such, there has been significant research
effort given to recovering control flow graphs directly from
binaries [16]. This amounts to a graph exploration problem,
in which the graph information is embedded in the firmware
binary, and graph vertices and edges are only revealed as an
exploration algorithm is executed. A toy example of CFG
recovery is shown in Figure 1. The figure demonstrates the
identification of basic blocks in ARM Thumb disassembly,
as well as the edges between those blocks that indicate con-
trol flow transfers due to conditional branch or function calls.
While straightforward in principle, there are many challenges
that make it difficult to recover a complete and accurate CFG.
Existing research on CFG recovery deals with many specific
issues, but perhaps the most fundamental one is the problem
of indirect jumps. These are control flow instructions whose
branch targets are not fixed–i.e. dependent on the value stored
in a register or memory location. Since this information is
only known at runtime, it is difficult to guarantee perfect CFG
recovery for software that contains indirection.

Since their inception, the most common CFG recovery
methods have been largely static, relying purely on the analy-
sis of program disassembly without runtime information like
processor or memory state [39]. The typical approach to static
CFG recovery is to scan the entire program binary for jump



and branch instructions whose targets can be resolved to begin
recovering basic blocks. When a target is found, the recovery
engine simply continues to disassemble contiguous instruc-
tions until the branch instruction that signifies the end of a
block is reached. This is continued until no new blocks can be
found [40, 42]. However, fundamentally, static recovery tech-
niques suffer from the problem of indirect jumps—branches
that are dependent on memory and register state. Significant
efforts have been made to address this problem and many
improvements have been applied to static techniques which
can help offset this problem [50], but the fundamental limi-
tation remains. By introducing dynamic execution, we can
theoretically resolve the indirect jump issue, as runtime infor-
mation can be extracted to resolve indirect jumps. As such,
there have been significant research efforts to build hybrid
and fully dynamic recovery engines which can yield more
complete, correct, and accurate CFGs [11]. These efforts have
ranged in their approach from pure emulation, to symbolic
execution. Moreover, the extracted runtime information can
be used to enhance other techniques and enable more com-
plete analyses, such as execution frequency annotation, on the
resulting CFG [1].

2.2 Dynamic Forced Execution

Introduced by Xu et al. in 2009, forced execution is a dynamic
technique for recovering CFGs predicated on the observation
that the calculation of indirect jump targets is usually inde-
pendent of intermediate program states, and postulates that an
accurate CFG can be recovered by exploring both directions
of every encountered conditional branch [48]. The original
optimized algorithm for the Forced Execution Engine (FXE)
is presented in Algorithm 1 In FXE, (1) the program is initial-
ized in a virtual environment and an empty CFG is instantiated.
(2) The engine begins executing the program at its entry point
and an exit point is inferred from the entry point’s value and
the code section size. (3) Path exploration is directed with a
coloring system for conditional branches. When a conditional
branch is encountered, its location is saved and uncolored,
indicating that neither path has been explored yet. (4) The
engine then saves the current processor and memory state,
as well as the target address of the branch path not taken.
(5) The engine then colors that branch gray and continues
down the execution path that is consistent with the emulated
branch condition. (6) When the current path terminates, either
because the engine has encountered a known basic block, or
because the program itself has terminated, the engine restores
context to the nearest gray branch, colors it black, and con-
tinues down the unexplored path. This results in a depth-first
exploration pattern that terminates when all branches have
been marked black. However, the original authors implement
further optimizations to ensure the timely termination of their
algorithm.

In order to avoid long-running or infinite loops, the engine

Algorithm 1: Dynamic Forced Execution
Output: CFG cfg
Input: Executable exe
cfg = NULL; current = NULL; block = NULL;

ip = get_instruction_pointer();
branches = [];

while true do
while block = get_block(ip) do

if !(exe.EntryPoint ≤ block.pc < exe.ExitPoint) or (block.quota
<= 0)) then

try
ip = execute_block(block);

catch (exception)
error_handler(ip, block, exception);

continue;
connect_block(cfg, current, block);

current = block;
while inst = get_instruction(block, ip) do

if (inst.type == ConditionalBranch) and
(find_branch(inst) == NULL) then

branch = get_branch(inst);
if branch_is_taken(branch) then

branch.next_ip = ip + inst.length;
else

branch.next_ip = get_target(branch);
branch.state = gray;

save_context(branch);
add(branch, branches);

else if (inst.type == CallBranch) and (find_branch(inst)
̸= NULL) then

branch = get_call_branch(inst);
get_return_points(branch, cfg); // forward
reachability

branch.next_ip = ip + inst.length;
branch.state = gray;
save_context(branch);
add(branch, branches);

if (inst.type == IndirectBranch) and (find_target(inst) not
in known_targets(inst)) then

add_target(inst);
increment_quotas(current, cfg); // backward
reachability

try
ip = execute_inst(inst);

catch (exception)
error_handler(ip, block, exception);

if branch = get_last_gray_branch() then
load_context(branch);

ip = branch.next_ip;
branch.state = black;
current = get_branch_block(branch);

if branch.type == CallBranch then
add_return_points(branch,current.predecessors);

else
break

resolve_blocks(cfg);
return cfg;

assigns each basic block an execution quota that determines
whether it should be skipped or not. On the first encounter, a
block is given a quota of 1 and the quota is decremented after
execution. If a block is encountered that ends with an indi-



rect branch, and the branch target has not been seen before,
then after executing it the engine will increment its quota and
the quota of every block leading up to it within the current
function. A block is thus only executed if it has a non-zero
quota, while still allowing for the future discovery of other
indirect branch targets. However, an additional consideration
needs to be addressed to preserve CFG edge completeness.
To circumvent the loss of function fall-through edges–which
may occur when a function that has already been explored is
called from a new location, resulting in termination before
returning–function calls are treated similarly to conditional
branches. The call branch is colored gray and added to the
branch list with the saved fall-through path context (i.e. the
return address). To capture the return edge from the func-
tion to the fall-through path, forward reachability analysis is
performed on the function to determine the possible return
points, which are all added as return edges for the fall-through
path. An exception handler is also implemented to allow for
graceful recovery from crashes that may arise from exploring
the contradictory path at conditional branches.

While the forced execution method appears to be quite
effective at recovering CFGs based on coverage results of
the reported benchmark, the algorithm does have its draw-
backs. Particularly, in its presented form, it has only limited
support for recovering unconnected portions of the CFG that
do not exist as part of the main thread of execution but may
be executed asynchronously, such as those representing in-
terrupt service routines (ISR). The authors rely on manually
enumerated instruction patterns in order to detect interrupt
handler registration, after which the forced execution engine
can be invoked on the registered interrupt [48], where event
and interrupt-driven programming is prevalent, the manual
enumeration of patterns for handler registration patterns is
impractical since there are many ways that an ISR might be
registered. Moreover, forced execution neglects the role that
volatile memory addresses may play in resolving the indirect
jumps, and does not handle cases where indirect jumps tar-
gets are contingent on volatile data. In order to adapt forced
execution to event-driven firmware, we relax some of the
assumptions that FXE makes about the independence of pro-
gram states, and augment to FXE algorithm to account for
volatile memory and interrupt handlers.

3 Related Works

Indirect jump resolution in CFG recovery remains an ongoing
topic of research. While many efforts have been made to
resolve indirect jumps in a purely static fashion [6, 7, 14, 17,
21, 22, 29, 37, 37, 44], many of the more recent approaches to
this problem leverage dynamic analysis techniques [20, 32,
36,38,39,42,49,50]. In this section, we outline some of these
works, focusing on methods that leverage dynamic analysis
techniques.

Nguyen et al. [32] propose a hybrid approach that combines

static and dynamic analysis for CFG generation from binaries.
Symbolic execution is used in the static analysis phase until
an indirect jump or function call is encountered. Test cases
are then generated to cover all execution paths, and dynamic
analysis is used to execute the test cases to resolve jump
targets. Static analysis is then invoked to analyze new targets,
and the process is repeated in this alternating manner until no
new targets are found.

In a continuation of work on forced execution, Peng et
al. [36] introduce X-Force, a binary analysis engine that ap-
plies forced execution for a small set of conditions to explore
paths and expose a binary’s behavior. Dynamic binary in-
strumentation is used to monitor the concrete program state
of the target binary. X-Force is used for three different ap-
plications of CFG recovery, malware analysis, and reverse
engineering, thereby demonstrating the potential of force exe-
cuting binaries for security purposes. However, You et al. note
that because X-Force is a heavy-weight engine and therefore
suffers from scalability issues, it is impractical to use [49].
They improve upon it with PMP, a practical forced-execution
engine that instead avoids tracking individual instruction and
on-demand allocation using a buffer pre-allocation scheme
that prevents pointer dereferencing exceptions and probabilis-
tically avoids state corruption.

A popular framework for dynamic binary analysis, angr
[42] offers two separate recovery algorithms: CFGFast and
CFGEmulated. CFGFast uses static analysis for CFG gener-
ation, sacrificing the graph recovery accuracy for speed and
coverage, employing standard static recovery techniques such
as function prologue matching and recursive disassembly.
CFGEmulated uses a combination of dynamic forced execu-
tion, symbolic execution, and backward slicing, prioritizing
completeness in resolving indirect jumps, resulting in a more
accurate CFG at the cost of execution time. The first stage
of the algorithm uses forced execution to seed further CFG
recovery by adding basic blocks and their direct jumps only to
the CFG under construction. To ensure that indirect jumps are
resolved correctly, angr does not make the assumption that
indirect branches are independent of intermediate program
states. Thus, all indirect jumps discovered with forced exe-
cution are stored for later analysis. angr then uses symbolic
execution on the path to an indirect jump, utilizing a constraint
solver to retrieve possible jump targets. Any unresolved jumps
are further analyzed in a context-sensitive manner by creat-
ing a backward slice of the program starting from the unre-
solved branch that includes all call contexts. Because angr
is designed specifically for binary analysis, many of its tech-
niques can be applied to ARM-based firmware out-of-the-box.
However, it is fundamentally designed for general-purpose
software, making it unclear how effective it is for firmware,
which exhibits many non-standard programming patterns.

Recently, Zhu et al. [20] have proposed another hybrid re-
covery technique for x86 binaries that uses static analysis re-
cover an initial CFG, then employs coverage-based gray-box



fuzzing to generate test cases that are used to resolve indirect
jumps. The technique is further developed in a later work
using directed gray-box fuzzing [50] on C/C++ programs at
the source code level. Hence, while interesting, neither tech-
niques are suitable for binary analysis of firmware images,
which are almost never in x86, nor have access to source code.

4 Design and Implementation

At a high level, we propose a forced execution-based algo-
rithm that takes memory accesses into account in order to
recover registered callback functions. In our algorithm, we
first apply forced execution to each known ISR entry point
in order to determine what addresses may be accessed asyn-
chronously. Once this scan is complete, we begin forced exe-
cution from the main entry point, watching for memory writes
to addresses that overlap with those accessed by ISRs. When
such accesses are detected, we restore the corresponding ISR
execution state, overwriting the accessed memory location
with the value of the write. When the values written are regis-
tered function addresses, this allows the emulator to correctly
resolve subsequent indirect branches that rely on that value.
However, before we discuss our algorithm in depth, it makes
sense to first discuss the reimplementation of the original
Forced Execution Engine (FXE), as some minor changes to
the original algorithm must be made for use with our chosen
emulator. As our algorithm relies on portions of the original,
these modifications will be carried forward into our algo-
rithm’s implementation.

4.1 Reimplementing FXE
As the method of forced execution requires dynamic informa-
tion, we require an emulator for the instruction set of the target
embedded system. For this, the Unicorn emulation frame-
work [13] was an ideal choice, as it provides a more flexible
interface to the powerful JIT binary translator used in the
Qemu emulator, and is a good platform for adapting forced
execution to other architectures. We choose Python to imple-
ment the proof of concept, as it is a widely adopted language
and easy to work with. Though Python is generally slower
and allocates more memory at runtime than other languages,
our priority is proof-of-concept, so this is acceptable. We also
rely on the Capstone disassembly framework [33] to identify
instructions. However, because of some unfortunate bugs in
the Capstone and Unicorn frameworks, some of the memory
decoding and access checking functionality became unreli-
able. Thus, decoding crucial memory and branch instructions
required custom structures to parse opcodes and parameters.

Since the original forced execution algorithm was imple-
mented using neither Python nor Unicorn, we first reimple-
ment the original forced execution engine (FXE) in Python
and Unicorn for later comparisons. Our version of the orig-
inal includes the block execution quota system, as well as

the associated backward and forward reachability steps neces-
sary to deal with the complications that inevitably arise when
blocks are not allowed to execute. We do not include a sepa-
rate construct for error handling, as exceptions can be handled
on a case-by-case basis using Python’s built-in try-except
syntax.

Unicorn already encapsulates an emulator and exposes em-
ulator state information primarily through a hook/callback
API, so the algorithm could not be implemented in the same
form as the original Algorithm 1. We instead implemented
FXE piecewise, in separate callback functions for blocks and
instructions. These callbacks are executed when the emula-
tor encounters a new Qemu translation block and the next
instruction, respectively. Hence, while the forced execution
algorithm remains fundamentally the same, different portions
of the algorithm must be written into the callback function
suitable to the operation being performed. As mentioned, this
was further complicated by bugs in the Unicorn and Capstone
code base which were leading to the unreliability of hook-
ing memory accesses and decoding of branch and memory
instructions. We therefore defined custom ctypes structures
for each branch, load, and store instruction type to guarantee
proper behavior for the algorithm. This was done for the most
common types of single load and store instruction, but not all,
so there is some chance of incompleteness.

4.2 Implementation

We augment the original FXE algorithm by introducing some
platform-aware modifications, specifically targeting ARM-
based microprocessors for our prototype, since ARM-based
systems hold a large share of embedded systems market. Mod-
ern ARM architectures come in 3 variants: Cortex-A for
general-purpose computing, Cortex-M for efficient comput-
ing in constrained resource environments, and Cortex-R for
performance computing with real-time requirements. Of the 3,
Cortex-M is most frequently used for embedded systems and
microcontrollers, though Cortex-R is not uncommon, and is
the successor to older architectures that employed both ARM
and Thumb modes of the instruction set architecture (ISA),
such as ARM7TDMI. We design our prototype primarily for
Cortex-M, though we have also implemented some support
for ARM7TDMI and Cortex-A/R, which we discuss in later
sections.

4.2.1 Locating ISR Entry Points

Before we can run FFXE on a given firmware, we must first
determine its program entry points: the main entry point, and
the ISR entry points. The Cortex-M architecture family imple-
ments hardware interrupts using the Nested Vector Interrupt
Controller [4]. While we will not delve into the details, it
suffices to know that hardware events are linked to an entry in
the NVIC’s vector table, which contains the address of a call-



Figure 2: Registered Function Example.
(1) The main thread writes the registered function address 0xb4d to a static
address known to the API callback. (2) In the ISR thread, the API callback
reads the registered function address into a register. (3) The API callback

then calls the registered function by jumping to the address in the register.

back function. The vector table is a sequence of consecutive
words that correspond to the location of a callback function
or interrupt service routine (ISR) that will be invoked if its
corresponding hardware event occurs. Particularly important
is the Reset Handler entry, which is the first entry of the vector
table. As defined by the Cortex-M architecture, on cold reset
or startup, the processor will always initialize the program
counter from the fixed address 0x4, which is also the default
location of the Reset entry of the vector table. While the vec-
tor table can be relocated at runtime, 0x4 will still contain a
valid pointer, which we can take to be our main entry point
if the firmware image base address is still 0x0. If this is not
the case, prior work in FirmXRay [46] has been done on stati-
cally locating relocated vector tables, which we can utilize to
attempt to locate a valid base address.

In general, the first set of vector table locations are used for
exception handling and other privileged use-cases. However,
starting from offset 0x40 in the vector table, generic interrupt
handlers can be registered [24] per vendor hardware speci-
fication. For example, the nRF52 series of microcontrollers
maps specific sets of peripherals to each generic ISR entry
point [41]. The vector table provides us with entry points for
starting forced execution on these handlers, but the quality of
the resolved blocks will still be poor if the state of the emu-
lator’s volatile memory locations does not accurately reflect
the expected state that the handler should operate in. This is
due to the fact that these handlers are typically responsible for
invoking user-registered callbacks, which means the functions
must be registered in the emulator’s memory at the time of
execution if they are to be recovered. This also means that the
state of volatile memory locations must be taken into account
to resolve indirect jumps that rely on volatile data.

4.3 Designing for Volatile Memory
As previously stated, volatile memory locations play a promi-
nent role in embedded systems programming. While “volatile”
can also refer to the permanence of memory with respect to

power cycling. Herein, we use the term to refer to memory lo-
cations whose data may be altered asynchronously—the same
way thevolatile C keyword is used. In embedded systems,
a volatile memory location typically corresponds to a memory
location that is accessed by both the main thread of execu-
tion and an interrupt service routine, or to a memory-mapped
hardware peripheral register. This is especially relevant for
interrupt service routines, as it is a common programming pat-
tern to register functions to particular hardware events using
an application programming interface (API). Such APIs, like
those in the nRF52 software development kit [34], are typi-
cally implemented in such a way that some default handler is
defined for each possible hardware event, which then invokes
a callback function that was registered at API initialization.
An example of this is shown in Figure 2. This means that there
is indirection associated with interrupt events, which poses a
significant challenge for CFG recovery, as most static methods
will have no way to resolve an indirect jump whose target is
determined dynamically in a separate execution thread. This
is the primary issue we attempt to tackle in this work.

4.3.1 Modifying Forced Execution

To address the aforementioned challenges, we propose the
following algorithm for volatile-aware forced execution:

1. Initialize the emulator’s memory state by pre-executing
the reset handler, which is responsible for copying pre-
initialized global variables into RAM. This is done be-
fore forced execution begins because it typically involves
a loop that may not be fully executed during forced exe-
cution due to the block execution quota system.

2. Do a forced execution pass on each of the ISR function
addresses in the vector table, excluding the main entry
point. During each of these passes, the engine records
each memory access as a volatile memory access.

3. If the volatile memory access was a read, the engine
creates a backup of the emulator’s CPU and memory
context associated with the address and saves the vector
table entry that it was descended from. This will allow
it to resume execution from that point when the volatile
address is written in the main thread of execution.

4. After a pass is conducted on each vector table entry, the
quotas on all ISR blocks are reset and the engine begins
forced execution at the main entry point. As it executes
portions of the original algorithm along the main thread,
it also watches for accesses to volatile addresses and logs
any memory writes, volatile or otherwise, to a dictionary.

5. Whenever a volatile memory address is written, the en-
gine resumes execution from any reads to the same ad-
dress that occur in a different thread context, modifying
the memory state to reflect that at the time of writing



so that the written value has a chance to influence any
indirect jumps that may rely on it.

6. If any new blocks are discovered in an ISR thread, the en-
gine updates its record of volatile memory locations with
any additional memory accesses that are encountered,
saving and restoring execution contexts as necessary
if it is found that a previously written address is now
identified as volatile.

7. Additionally and optionally, the engine queues addi-
tional forced execution passes on ISR entry points under
2 conditions: (a) when it is recognized that interrupts
have been enabled for a given peripheral via a memory-
mapped register write, and (b) when wait-for-interrupt
(WFI) or wait-for-event (WFE) instructions are encoun-
tered in the main thread. This is done to increase the
odds of capturing as many possible memory states that
might be valid under preemption, so as to improve the
odds of finding valid indirect execution paths.

We acknowledge that our technique exhibits significant
coupling with hardware and ISA, particularly with respect
to the second and last step in our algorithm. In step 2 we
rely on the Cortex-M definition of the vector table to locate
ISR entry points; however, the concept of the vector table
is not specific to the Cortex-M architecture, and nearly all
common architectures for embedded systems implement a
similar scheme to facilitate interrupt handling. Moreover, in
step 7, we note that the precise memory address that enables
interrupts is completely platform dependent, and the WFI
and WFE instructions are specific to the ARMv7e-M ISA.
However, note that the underlying concept of this step can
be generalized to other hardware platforms and architectures.
Note further that this step is not integral to the algorithm, as
it is included primarily to further cover the search space for
indirect execution paths–paths that are contingent on indirect
jump targets. The core contribution is the idea of resuming
execution from volatile memory accesses in order to resolve
indirect jump targets that are contingent on asynchronous
writes to those locations.

4.3.2 Edge Cases

In this section, we discuss the various edge cases that have
been considered during implementation. As one might ex-
pect, there are a significant number of edge cases that arise
as a result of forcibly executing indirect jumps from invalid
execution states. Moreover, because compiler optimizations
can significantly change the layout of the original source
code, there are additional edge cases to consider where typ-
ical conventions may have been violated. Additionally, the
ARMv7e-M instruction set implements some instructions that
have unique effects and must be handled specially.

Encountering Invalid Addresses: During the course of
forced execution, it is very common that an invalid basic

Figure 3: FFXE Algorithm Diagram

block will be encountered as a result of either an indirect
jump from an inconsistent processor state or a fall-through
edge that does not correspond to an actual function return.
We observed that these invalid block locations tend to fall
into one of three categories: (1) the 0 address and vector ta-
ble entries; (2) data that has been interspersed within code
sections; and (3) non-instruction regions like separate data
sections, empty code regions past the edge of the firmware im-
age, and hardware-mapped memory regions. The first and last
categories are typically a result of invalid indirect jumps and
are dealt with by halting execution if an address within those
ranges is encountered. To deal with invalid attempts to fetch
interleaved data, we refer to the memory log to determine if
the address has been read from before. If it has, we assume
that the address corresponds to data and halt the execution,
allowing the engine to continue on to the next path to explore.
This category of invalid locations tends to be encountered as



Figure 4: FFXE Software Architecture Diagram.

a result of an invalid fall-through edge, i.e. one that does not
correspond to a returning function call, as in the case of tail
call optimized functions. In addition, we also check that ev-
ery instruction in a new translation block can be successfully
disassembled, terminating if any invalid instruction is encoun-
tered. In each case where we terminate execution, we mark
the invalid block for deletion, which occurs alongside the
resolution of overlapping blocks at the end of the algorithm.
In doing this, we prioritize the validity of our reconstructed
CFG, attempting to prune those blocks and edges which we
believe do not appear in the true CFG. However, in rare cases,
this can remove a block that is actually a known target of a
direct jump. In this case, we want to prevent the deletion of
the block and edge. Therefore, we also keep track of explicitly
defined jump targets and protect them from removal, forcing
the engine to explore the defined targets regardless of the
address location and preventing over-pruning.

Detecting Inlined Functions: It appears that tail call func-
tions result in more than just invalid fall-through edges. They
also complicate the detection of inlined functions, since an
inlined function invoked via tail call may violate expecta-
tions if it is done without explicitly using a branch-and-link
instruction. For instance, this may be done by overwriting
the return address of a function address before a pop instruc-
tion is invoked, calling the next function implicitly similar
to return-oriented programming, or making an unconditional
branch straight to the inlined function without linking. While
it is impossible to guarantee the detection of inlined functions
under all circumstances, we are able to guess their presence if
they are called more than once from separate locations. Since
each block is labeled with the address of the function they
are believed to belong to, we can detect if a block has been
executed before from a different function context. This is
because, in our implementation, blocks inherit their function
label unless a branch-and-link instruction gives it a new one
or a function return is detected based on the call stack return
address. When an existing block’s function label mismatches
the current context, we assume that it is the start of its own
function and relabel it, and any of its successors with the same
address. This solution is not formally proven. In particular,
the propagation of function labels may be troublesome, but in

practice, it does not seem to cause undue pruning.

Thumb IT Instruction: This instruction is used to define
conditional blocks for otherwise unconditioned instructions,
allowing the programmer to conditionally execute several se-
quential, individual instructions based on a single condition
code [25], this can complicate the forced execution algorithm
if taken to be separate control flow paths since it would break
the conditional block into several separate basic blocks. It
turns out that Unicorn treats these blocks as a single trans-
lation block, so we are incapable of resolving this aspect of
the control flow. Hence, we resign ourselves to dealing with
conditional blocks only in the event that they end in a branch
instruction, making that a conditional branch that requires a
context split.

Table Branch Instructions: The ARMv7e-M ISA also im-
plements the table branch instructions tbb and tbh, which
are essentially the ISA’s version of a jump table [25]. These
instructions enable PC-relative forward branching based on a
table of single-byte or single halfword offsets, respectively. A
base register is used to indicate the start of the table, which
can be the PC, allowing the table to be interleaved with in-
structions in the code section. The branch target is twice the
value of the table entry. Under forced execution, the natural
way to deal with this is to follow every unique branch path
in the table, looping through the entries and adding each one
to the exploration queue until we reach the end of the table.
However, as far as we can tell, there is no hard limit on the size
of the table, so we rely on empirical observations and assump-
tions made in line with Cojocar et al. [12] to decide when
to stop adding entries, potentially resulting in long-running
loops or lost coverage. We first observe that table branch
instructions are almost exclusively compiled from switch
statements, which results in a short data section inserted be-
tween the table branch instruction and the compiled case
statements. This means that as we loop through the entries if
we encounter a memory address that corresponds to a previ-
ously calculated branch target, we have hit the end of the table
and can terminate the loop. This strategy proves effective in
the cases we have observed, but to avoid overestimating the
number of jumps, we also introduce termination conditions
for several other scenarios: if the target is outside of a valid



Table 1: Registered Function Resolution Comparison of CFG
Recovery Methods.

Firmware angr_emu angr_fast ffxe fxe ghidra

gpiote

-O0 0/0/1 0/1/1 1/1/1 0/0/1 0/1/1
-O1 0/0/1 0/1/1 1/1/1 0/0/1 0/0/1
-O2 0/0/1 0/1/1 1/1/1 0/0/1 0/0/1
-O3 0/0/1 0/1/1 1/1/1 0/0/1 0/0/1

i2s

-O0 0/0/4 0/4/4 9/4/4 0/0/4 0/4/4
-O1 0/0/4 0/4/4 10/4/4 0/0/4 0/3/4
-O2 0/0/4 0/4/4 12/4/4 0/0/4 0/3/4
-O3 0/0/4 0/4/4 12/4/4 0/0/4 0/3/4

saadc

-O0 0/0/2 0/2/2 4/2/2 0/0/2 0/2/2
-O1 0/0/2 0/2/2 4/2/2 0/0/2 0/2/2
-O2 0/0/2 1/2/2 4/2/2 0/0/2 0/2/2
-O3 0/0/2 1/2/2 4/2/2 0/0/2 0/2/2

simple_timer

-O0 0/0/2 0/2/2 2/2/2 0/0/2 0/2/2
-O1 0/0/2 0/2/2 2/2/2 0/0/2 0/1/2
-O2 0/0/2 1/2/2 2/2/2 0/0/2 0/1/2
-O3 0/0/2 1/2/2 2/2/2 0/0/2 0/1/2

spi

-O0 0/0/5 0/5/5 7/5/5 0/0/5 0/5/5
-O1 0/0/5 0/5/5 8/5/5 0/0/5 0/4/5
-O2 0/0/5 0/5/5 10/5/5 0/0/5 0/4/5
-O3 0/0/5 0/5/5 10/5/5 0/0/5 0/4/5

timer

-O0 0/0/1 0/1/1 1/1/1 0/0/1 0/1/1
-O1 0/0/1 0/1/1 1/1/1 0/0/1 0/1/1
-O2 0/0/1 0/1/1 1/1/1 0/0/1 0/1/1
-O3 0/0/1 0/1/1 1/1/1 0/0/1 0/1/1

twi_sensor

-O0 0/0/5 0/5/5 7/5/5 0/0/5 0/5/5
-O1 0/0/5 0/5/5 8/5/5 0/0/5 0/4/5
-O2 0/0/5 0/5/5 10/5/5 0/0/5 0/4/5
-O3 0/0/5 0/5/5 10/5/5 0/0/5 0/4/5

uart

-O0 1/1/4 0/4/4 9/4/4 0/0/4 0/4/4
-O1 0/0/4 0/4/4 10/4/4 0/0/4 0/4/4
-O2 0/0/4 2/4/4 12/4/4 0/0/4 0/2/4
-O3 0/0/4 2/4/4 12/4/4 0/0/4 0/2/4

Table elements: (# of found edges to registered function)/(# of found
registered function entry blocks)/(# of known registered functions).

code region, if the jump target has a null value, and if the jump
target cannot be disassembled. These all generally correspond
to invalid jump targets, which we assume would indicate the
end of the table. According to Cojocar’s findings, such scenar-
ios are unlikely to come into play, but we feel it appropriate
to include them nonetheless. Note however that switch state-
ments do not always translate to table branch instructions and
FFXE currently does not handle other compilation patterns.

5 Evaluation and Results

5.1 Registered Function Resolution
As we have discussed at length, our algorithm is designed
to resolve indirect jumps in firmware whose targets are de-
pendent on volatile memory locations. Thus, our primary
interest is whether our technique is able to resolve functions
that are called following a registration pattern. To evaluate
this, we consider a set of 8 firmware taken from the nRF52
SDK peripheral examples that are known to use the func-

tion registration pattern. We compile each sample using the
arm-none-eabi-gcc [26] compiler at 4 optimization levels
in order to maximize the variation in binaries and effectively
bring our test set size up to 32. We execute our algorithm, as
well as several others, on each of the samples, then determine
each algorithm’s success at finding known functions based
on the presence of both a function’s entry block and a valid
control flow edge to that block in the graph. The location and
presence of each registered function are determined manu-
ally by analyzing the source code and unstripped disassembly.
The results of our analysis are listed in Table 1, in which
each cell lists the number of known registered functions, the
number of function entry blocks found, and the number of
edges leading to those blocks from right to left. As can be
observed, our algorithm can resolve callback function blocks
as well as the edges leading to them, giving us confidence in
the technique’s ability to resolve volatile-influenced indirect
branches. Note that we consider registered functions resolved
when both the function entry block and an indirect jump to
that block are found. However, the table records only the num-
ber of edges that lead to functions, without consideration for
the control flow transfer type. We have manually analyzed
this and discuss the results further in Section 6.

5.2 Overall Coverage Comparisons

Of secondary interest is how our technique compares to other
algorithms overall. The goal of CFG recovery is to obtain a
high-quality graph that is as close to the ground truth as pos-
sible, where the ground truth is represented by the ideal CFG
which contains the set of all reachable basic blocks and all re-
alizable control flow transfer edges. CFG quality is therefore
judged on 2 primary criteria: soundness and completeness.
We adopt the definitions of soundness and completeness in
alignment with the angr authors, who flip the definitions of
Xu et al. [48]: the recovered CFG GR is sound with respect
to the ideal CFG GI if all edges in the ideal CFG are in the
recovered CFG. Conversely, GR is complete with respect to
GI if all edges in GR are in GI . Thus, a perfectly reconstructed
CFG is both sound and complete, neither missing vertices nor
edges, nor having non-existent ones, while an empty graph
would be considered complete, and a fully-connected graph
would be considered sound [42].

In an ideal world, we would evaluate the results of our
CFG recovery algorithm against a ground truth CFG. How-
ever, short of painstaking manual analysis, it is rather difficult
to establish the notion of ground truth when considering CFGs
recovered from disassembly [35]. A number of works in the
literature note that an ideal CFG might be derived directly
from source code, but the resulting CFG does not necessarily
map well to binary. Moreover, the accuracy of indirect jump
edges resolved this way is not always guaranteed [36,48]. The
same works opt to approximate the ground truth CFG by tak-
ing the union of observed execution paths from a curated set



Figure 5: CFG Overlap Between FFXE and other Algorithms (Blue: FFXE only, Red: Column Technique only, Purple: overlap).

of inputs, designed to trigger as many conditions as possible.
Unfortunately, designing those inputs for maximum coverage
is cumbersome, and while some papers attempt a similar ap-
proach via fuzzing [50], the fuzzing of bare-metal firmware is
a significantly difficult task. For the same reasons, generally,
the union of inputs method is much more difficult to apply
to entire firmware images, since firmware inputs typically
come from hardware sources and would require significantly
more effort to instrument than simply invoking a program
with different parameters.

Having established that, short of exacting manual analy-
sis, obtaining an ideal CFG is generally infeasible, we in-
stead adopt the approach taken by other works on CFG recov-
ery [35, 36, 39, 50] and evaluate our method against existing
CFG recovery tools by comparing overlap between recovered
blocks and edges. In particular, we compare FFXE against
our implementation of the original paper’s FXE [48], angr’s
speed-optimized static method and accuracy-optimized dy-
namic method [42], as well as Ghidra’s built-in static CFG
recovery technique [31]. We use the same set of firmware
binaries compiled in Section 5.1, with the addition of the
blinky firmware example, for a total of 36 firmware images.
The results can be seen in Figure 5, which shows the edge and
block overlap between FFXE and the other engines. Specif-
ically, we define an overlapping block as any block in one

Table 2: Real-World Firmware Set

Firmware Device Processor Arch

chargehr_18_32.bin FitBit Charge HR STM32L151QD ARM Cortex-M3
chargehr_18_128.bin FitBit Charge HR STM32L151QD ARM Cortex-M3
flex_7_64_flash.bin FitBit Flex 1 STM32L151RC ARM Cortex-M3
flex_7_81_flash.bin FitBit Flex 1 STM32L151RC ARM Cortex-M3
flex_7_88_flash.bin FitBit Flex 1 STM32L151RC ARM Cortex-M3
polypus_bcm20702a1.bin Asus USB Dongle BCM20702A1 ARM7TDMI
switchmate_bright_1_46.bin Switchmate Bright nRF52832 ARM Cortex-M4
switchmate_bright_2_9_11.bin Switchmate Bright nRF52832 ARM Cortex-M4
switchmate_light_2_21.bin Switchmate Bright nRF51822 ARM Cortex-M3
switchmate_light_2_99_16.bin Switchmate Bright nRF51822 ARM Cortex-M3

engine whose address range is completely covered by one
or more blocks of the other engine. Hence, the blocks found
exclusively by one engine in Figure 5 are those blocks that
contain addresses not found by the other engine. This is to
account for the fact that 2 engines may locate blocks covering
the same address range, but with different sizes and bound-
aries due to differences in edge resolution. Additionally, note
that results denoted as cnnctd correspond to the reachable
subgraph of that engine’s statically recovered CFG, where
only blocks and edges that have a path from a known entry
point are kept from the original. We discuss the results in
Figure 5 further in Section 6.

In addition to these unit tests, we also run FFXE on a set
of real-world firmware samples sourced from 4 commercial



Figure 6: Block Coverage and Edge Overlap Comparison for Real-World Samples (Blue: FFXE only, Red: Column Technique
only, Purple: overlap).

products: (1) the FitBit Flex 1 smartwatch, (2) the FitBit
Charge HR smartwatch, and (3) the Switchmate Bright and
(4) Light smart light switch controllers. The firmware names
and processor models can be seen in Table 2, and the CFG
coverage comparisons between FFXE and other engines can
be seen in Figure 6. Note that in this figure, it is block cover-
age that is being charted, such the blue bars represent basic
blocks found by FFXE that have no address overlap with
blocks from the other engine. In other words, the exclusive
blocks found by either engine would cover address ranges
that are not found by other engines. Also note that FFXE is
compared to angr_cnnctd and ghidra_cnnctd, which are
the subset of blocks found by the static techniques that are
reachable from a known entrypoint.

5.3 Performance Comparisons
While our FFXE implementation is only a prototype and
not optimized for execution time, we are nonetheless inter-
ested in how its runtime compares to other techniques. As
dynamic analysis fundamentally requires longer execution
times, for what are likely obvious reasons–an entire CPU must
be emulated as opposed to purely examining disassembly–we
are inclined to compare FFXE runtime only against that of
other dynamic techniques, i.e. the FXE re-implementation and
angr’s CFGEmulated. To realize this objective, we use the
same test set as in Section 5.2. The execution times are listed
in Table 3 for the same set of firmware in Section 5.2 and were
measured on an Apple M1 Pro processor. We observe that
FFXE is considerably faster than angr’s emulated method,

and somewhat slower than the original implementation. This
is about what is expected given the relative complexity of each
of the recovery techniques in question. As mentioned before,
angr has a multi-step recovery process: first lifting the binary
to the VEX intermediate representation, running its own sym-
bolic version of dynamic forced execution as a preliminary
step, then applying symbolic execution and backward slic-
ing to accurately resolve every encountered indirect branches.
Naturally, this translates to longer runtimes, as both symbolic
execution and backward slicing involve graph traversal, and
symbolic execution must further invoke constraint solving,
which has a significant runtime overhead. With respect to the
FXE implementation, we find relatively small increases in
runtime that likely correspond to the traversal of additional
paths. Overall, we are satisfied with the performance of our
prototype, as it suggests that the runtime overhead introduced
by volatile memory tracking and restoration is relatively mod-
est. Improving the performance of our proposed method is a
subject of our future work.

5.4 Case Study: Resolving Complex Data
Flows

Our lab collaborates with the health technology startup heal-
thetile.io and they have given their permission for us to con-
duct a case study on firmware for their We-Be Band, a smart-
band designed for monitoring vitals like heart rate and blood
pressure. They have provided us with a firmware image and
graciously allowed us access to their source code so that
we can conduct an audit for the presence of vulnerabilities.



Table 3: CFG Recovery Execution Time Comparison.

Firmware angr_emu ffxe fxe

blinky

-O0 3.3847 0.1043 0.0676
-O1 1.3367 0.0752 0.0508
-O2 1.3423 0.0994 0.0493
-O3 1.3385 0.1205 0.0541

gpiote

-O0 6.5158 0.7406 0.1956
-O1 2.6518 0.2221 0.1075
-O2 2.8654 0.2520 0.1254
-O3 3.0719 0.3162 0.2552

i2s

-O0 15.6817 1.5442 0.4852
-O1 2.8067 0.9330 0.3883
-O2 3.0304 0.9931 0.2578
-O3 3.0753 1.1616 0.2479

saadc

-O0 16.1505 1.7066 0.5687
-O1 8.3874 1.1962 0.4551
-O2 10.2699 1.1024 0.5462
-O3 8.8527 1.1639 0.5672

simple_timer

-O0 6.8036 1.5731 0.3361
-O1 3.1150 0.5373 0.2077
-O2 3.1150 0.6180 0.2185
-O3 3.1150 0.9832 0.3324

spi

-O0 20.8080 3.5622 1.0024
-O1 20.8080 1.5054 0.6838
-O2 14.1050 1.8330 0.4394
-O3 12.3269 2.2592 0.5342

timer

-O0 4.5828 0.8804 0.3094
-O1 1.5755 0.4487 0.1877
-O2 2.7397 0.4738 0.1983
-O3 2.2008 0.4726 0.2006

twi_sensor

-O0 21.5604 5.8700 1.2674
-O1 21.5604 2.3000 0.8712
-O2 12.5984 2.6013 0.6310
-O3 12.0746 2.5879 0.5627

uart

-O0 24.9147 2.5149 1.0974
-O1 2.5656 1.7389 0.7607
-O2 11.2223 1.9881 0.8162
-O3 10.4894 1.9091 0.7826

Times are recorded in seconds.

While there were a number of potential issues we found in
their source code, there was one vulnerability that we found
which represents a data-flow path that would otherwise go
undetected if only using CFGs recovered with angr or Ghidra.
Since we were unable to find a plug-and-play automated vul-
nerability detection tool that employs binary data-flow analy-
sis, we instead identify the data-flow using Ghidra’s built-in
backward slicing capabilities for decompiled variables and
memory referencing capabilities.

This vulnerability can be classified as a potential buffer
overflow resulting from a lack of bounds checking for a buffer
copy. Because the target buffer is located on the stack, and

Figure 7: Backward slice of target buffer

the source buffer is read from I2C, the vulnerability is theo-
retically exploitable. The relevant portions of the backwards
slice can be seen in the Figure 7, where we show portions
of both the disassembly and decompiled code. We have also
verified the decompilation against the source code and con-
firmed that the decompilation is more or less accurate. From
our analysis, it is clear that tracing the affected buffer to as-
sess exploitability was only possible because we were able
to resolve calls to registered callback functions using FFXE.
The indirect calling edges were not present in static CFGs
produced by either Ghidra or angr. Additionally, angr’s emu-
lated CFG recovery analysis failed to execute, likely due to
lack of implementation details. Yellow highlighted regions
map disassembly between decompilation. As can be seen, the
first function registers both a callback function, as well as a
stack-allocated buffer. In the second set of mapped functions,
we can observe the loading of the stack-allocated buffer and
its subsequent passing as an argument to an indirect function
call, which is presumably a registered callback function. In
orange we see the insecure memory copy loop, which copies
the entirety of a global I2C buffer to a target buffer without
checking the target buffer’s length. From the disassembly, we
are able to backtrack the target buffer’s location to a stack
address, passed as a parameter into function FUN_000302c8,
which is evidently responsible for registering the callback
function to a global structure at 0x20004cb0. Note that the
data flow here occurs across threads, since the target buffer is
registered in the main thread, but then overwritten in an inter-
rupt context. Because neither Ghidra nor angr were able to
recover the control flow paths to the callback functions, which
is where the overflow occurs, they are unable to trace the tar-
get buffer all the way back to its source, which is necessary to
determine if the vulnerability is technically exploitable. The
presence of the unsafe buffer write alone is not proof that it
can be exploited via external input. We have notified our col-
laborator of the vulnerability and have been informed that it is



Figure 8: Qualitative Comparison of CFG Recovery Methods.

indeed a bug present in some of the debugging infrastructure
that they have implemented. They’ve informed us that it will
be removed. Note that we do not demonstrate the tangible
security benefits of FFXE-enhanced CFGs beyond the case
study we have presented here, as our focus is primarily on the
problem of CFG recovery. This case study is meant to be a
proof-of-concept for how FFXE can assist in further analysis.

6 Discussion

This section discusses the results of our evaluation, comparing
FFXE to other CFG recovery tools based on our observations.
A qualitative comparison of each technique can be found in
Figure 8, which ranks orders each technique into 5 categories
based on our results and experiences using each tool. Note
that in this section, we do not discuss each tool in-depth, but
focus on how each tool compares to FFXE.

6.1 Analyzing Identified Registered Function

As mentioned in Section 5.1, we consider a registered function
successfully resolved when both the function’s entry block,
(i.e. the first basic block in the function) and at least one valid
edge leading to that block is resolved. Moreover, we have
stated that the tabulated edge values had not been validated
as actual control flow transfers. Therefore, we must manually
analyze each of the cases where blocks and edges are reported
found to confirm their validity. We note first that in all test
cases for the FFXE, we have fulfilled these conditions and
confirmed that each edge does indeed correspond to a valid
indirect branch. We can therefore have some confidence in our
technique’s ability to resolve indirect branches whose targets
are written asynchronously to a volatile location. Conversely,
we have found that all edges found in other algorithms are
fall-through edges, which do not correspond to real control
flow transfers. This means that, in general, the entry blocks
resolved by the static algorithms–angr’s fast method and
Ghidra’s built-in method–are the result of pattern matching
against common function prologues. Hence, in reality, none
of the algorithms we compare against are actually capable of
resolving volatile memory-dependent indirect branches.

6.2 Considerations for Coverage Comparison

6.2.1 Comparison with Dynamic Techniques

Our coverage results are shown in Figure 5. We can ob-
serve improvement over the other dynamic methods, FXE
and angr’s emulated algorithm, evidenced by the significant
number of blocks and edges that were found exclusively by
FFXE, as opposed to those found exclusively by the other
methods. Furthermore, we demonstrate improvement over the
original FXE implementation, in that our recovered CFGs es-
sentially subsume those found by the original, finding nearly
all blocks and edges that the original finds, and additionally
those part of registered callback functions. This is expected
because our modifications to the original algorithm are rela-
tively minor, and do not alter the core mechanisms involved.
We are merely adding some functionality to account for asyn-
chronicity. Because the majority of the original algorithm
remains intact, we are able to resolve a CFG that is a superset
of the original. Hence we can claim that when compared to
the original, our enhanced version is able to provide a more
sound graph, though this necessarily increases uncertainty
about its completeness.

In comparison with angr’s emulated recovery method, we
observe significantly more coverage, which leads us to claim
greater soundness for our recovery technique. We further
investigate the underlying causes for the results by conducting
an automated analysis on the blocks and edges exclusively
found by angr. Due to space limitations, the tabulation of our
analysis can be found on our Github. 2

We observe that angr’s CFGEmulated algorithm priori-
tizes accuracy and completeness over coverage, and stores a
significant amount of runtime information to enable further
analyses like backward slicing. In order to optimize for accu-
racy and completeness, it makes significant use of value-set
analysis as well as constraint solving and symbolic execu-
tion when encountering indirect jumps. Because it takes this
approach, nearly all basic blocks that it finds are valid, and
tends to include all technically possible indirect jumps. The
angr documentation notes that indirect jumps resolved this
way are not guaranteed to be always taken. In our investi-
gation of recovered basic blocks we found an average error
rate of approximately 59%, in which the invalid blocks were
erroneously disassembled data regions, or corresponded to
dead nop instructions. Likewise, when considering recovered
edges, we found an average rate of error of approximately
19%, in which the edge started at or led to a false address.
When we consider the total number of blocks and edges re-
solved, FFXE almost always outperforms angr’s dynamic
recovery. Aside from FFXE’s ability to resolve registered
callback functions, we believe the primary reason for the dif-
ference is that FFXE employs concrete execution, while angr
employs symbolic execution. As a result, angr must always

2https://github.com/rchtsang/ffxe/tests/analysis

https://github.com/rchtsang/ffxe/tests/analysis


rely on constraint solving, value set analysis, or some other
additional method of indirect jump resolution when an indi-
rect jump is encountered, as opposed to having a concrete
target by default as FFXE does. While this does afford angr
some advantages, this puts much more burden on the indirect
jump resolution techniques for successful target resolution.
If resolution fails, further execution cannot continue down
that path. By contrast, because FFXE defaults to a concrete
value, it is able to continue exploring. The additional cost also
shows up in the form of additional execution time, since rely-
ing on constraint solvers for every indirect jump encountered
is expensive. For this reason, angr also limits the call depth
for function re-execution to 1. Our understanding of this is
that, after a function has been explored once, if is seen again,
it will only execute if calling that function will not increase
the depth of the call stack past the limit, further limiting the
potential for block resolution.

6.2.2 Comparison with Static Techniques

Comparison against static recovery techniques is not as
straightforward as against other dynamic techniques, due to
the fact that the underlying mechanisms are significantly dif-
ferent. As we have already discussed in earlier sections, static
methods often use pattern matching and fall-through edges
for the recognition of basic blocks and are limited in their
ability to resolve indirect jumps. This tends to lead to higher
block coverage, but diminished completeness, as fall-through
edges do not always correspond to valid control flow transfers.
We believe that these differences give a partial account for
the relative lack of overlap between CFGs resolved by FFXE
and those by static methods that appear to be present for
both angr’s fast static recovery (angr_fast) and Ghidra’s
default recovery (ghidra_simple), encoded in the size of the
red bars charted in Figure 5.

To understand the differences in resolved blocks and edges
between FFXE and static techniques, we have analyzed the
blocks and edges found exclusively by angr and Ghidra for
our unit tests on the nRF52832, since these binaries have cor-
responding source code and unstripped elf files whose disas-
sembly can act as ground truth in determining whether a block
is valid. This allowed us to programmatically determine if a
recovered block represented a real block, or was erroneously
disassembled data. Likewise for edges, we were also able
to filter edges that led to falsely disassembled instructions
in data sections or between actual instructions. As expected,
for angr_fast and ghidra_simple, there were significantly
more blocks and edges found than FFXE, since static pattern
matching strategies are not constrained by actual control flow
and, as a result, can pick up dead code or falsely disassemble
data. On average, about 62% and 48% of statically recovered
blocks, for angr and Ghidra respectively, corresponded to
erroneously disassembled addresses, and about 32% and 41%
of edges either started at or led to a false address, making

Figure 9: Visualization of coverage across the firmware image

them invalid. As we hoped, this is in line with our goal of
producing more accurate CFGs, particularly with regard to
completeness.

Additionally, we conducted a random sampling of the stati-
cally recovered blocks and edges that were not marked invalid,
then performed a manual analysis to identify the reasons why
FFXE could not resolve them. We determined that most of the
blocks in this category had one of 2 causes for lack of identifi-
cation: the blocks were part of unreachable dead code regions
(about 60% and 59% for angr and Ghidra respectively), or
the blocks could be traced back to a switch statement com-
piled as a load-based jump table (35% and 33%), which FFXE
does not handle. We also note that the compiler optimization
significantly influences this latter statistic, as unoptimized
code tends to include many more functions and code sec-
tions that would otherwise be optimized away, including the
aforementioned load-based jump tables. This appears to ac-
count for much of the differences in block resolution between
optimized and unoptimized firmware images. As for edges,
load-based branch tables (28% angr and 44% Ghidra) and
dead code (21% and 49%) again played a significant role, with
the difference that angr appeared to identify more function
return edges (39%).

Based on our in-depth analysis of those blocks and edges
not found by FFXE, we believe that FFXE provides comple-
mentary coverage gains to existing techniques, where existing
techniques have a definite edge in resolving load-based branch
tables, but fall short in completeness. Indeed, when we strip
away the dead code regions in the cnnctd graphs, Figure
5 suggests FFXE can markedly improve completeness with
the additional resolution of indirect branches. The complete
tabulation of our manual analysis can also be found on our
Github.

6.3 Effectiveness on Real-World Firmware

The high-level coverage comparisons between FFXE and
every other algorithms are included on our Github. As al-
ready mentioned, in general, static recovery techniques tend
to outperform dynamic techniques in terms of pure cover-
age. However, when we consider CFG coverage in terms of
blocks that are reachable from a known entrypoint, for 8 out



Figure 10: Basic block coverage overlap

of the 10 firmware images, FFXE coverage is comparable
or substantially complementary to other techniques. In all
cases of coverage comparison, we found that FFXE reports
blocks that have non-overlapping coverage with other tools,
which implies that FFXE has complementary utility with ex-
isting techniques. Note this is especially true of the images
for the Switchmate Light and Bright, one sample of which
is shown in Figures 9 and 10. Again, note that when com-
pared to static tools, FFXE is helpful for recovering reachable
blocks as opposed to sheer coverage of the address space.
In the example above, this can be seen when comparing the
overlaps to connected (“cnnctd”) graphs, which are simply
the results of doing a full traversal of the statically recovered
CFG from any known entry point. While nearly all of FFXE’s
blocks are covered by static analysis, when the static CFG
(whether from Ghidra or from angr) is reduced to only what
is reachable from entry points, the coverage is significantly
diminished. This is because both angr and Ghidra apply a
mixture of pattern matching and recursive disassembly when
conducting their analysis, which allows them to aggressively
identify potential functions for disassembly, but cannot pro-
vide the control flow edges that would lead to them. This, as
mentioned earlier, can impede automated analyses. Hence,
our tests on real-world firmware demonstrate that the compli-
mentary control flow edges that FFXE resolves can benefit
analysis algorithms that rely on accurate representations of
control flow between blocks.

6.4 Shortcomings

Here we must clarify what we believe to be the current short-
comings of FFXE:

• Increased Memory Footprint: To restore context upon
asynchronous writes to volatile memory, we employ the
simple but memory-intensive strategy of making addi-
tional backups of the processor and memory state. As
this is already a costly task, we potentially exacerbate
the problem by keeping these additional backups.

• Exploration Cycle Uncertainty: In the original forced
execution paper, the quota system is introduced to guar-
antee termination of the depth-first search, and optimiza-
tions are made to ensure that enough state information
is captured to lead to valid indirect jumps. We leave this
system intact in our implementation and do not account
for all edge cases that may arise when restoring a state
based on a volatile memory write. While we believe that
the quota system should handle this without modifica-
tion, we have conducted no rigorous proof of this claim,
and therefore admit uncertainty in the occurrence of in-
finite loops that may result from improper handling of
block quotas in conjunction with cycles in the CFG.

• Invalid Processor States: The original paper was based
on the assumption that indirect branch targets were gener-
ally independent of intermediate states. This assumption
has been found to be false on multiple occasions [36,42].
While our work discards this assumption implicitly, as
the very notion of volatile memory states must necessar-
ily invalidate the assumption, the rest of the algorithm
has not been touched, and may therefore still be subject
to the shortcomings that accompany the invalid processor
states when conditional statements are ignored.

• Architecture Dependence: Our prototype is currently
coupled to a particular hardware platform and ISA.
While we have created it with some flexibility and the
ability to adapt to other hardware platforms that imple-
ment the same ISA, it is still fundamentally tied to the
underlying architecture, particularly the Cortex-M in-
terrupt management system. This means that, while not
impossible, some implementation effort is necessary to
apply this technique to other architectures.

• Scalability: Given our observations of execution time
compared against both angr and the original FXE imple-
mentation, the scalability of our technique is not entirely
certain. By adding additional context backups and path
explorations on top of those needed by the original al-
gorithm, we introduce some overhead in both execution
time and memory footprint. However, it is difficult to pre-
dict how this overhead scales with firmware size without
further analysis.

7 Future Work

Based on our observations in Section 6, we believe there
are several practical directions that this research might take.
First, because we have observed that our modification to the
original forced execution algorithm adds only modest over-
head to execution time, we believe that the general concept
of volatile-aware forced execution might be incorporated into
more mature existing dynamic CFG recovery techniques, like
that of angr’s emulated method. Doing so could make angr’s



already powerful recovery technique much more suitable for
firmware analysis. Furthermore, doing so would directly ad-
dress the aforementioned issue of invalid processor states, as
angr’s emulated method directly addresses this shortcoming
through the use of symbolic execution. Conversely, we can
consider enhancing FFXE further by adapting some of angr’s
techniques and attempting to address the issues of invalid pro-
cessor states, architecture dependence, and lack of features
using intermediate representations and symbolic execution.

Second, we consider further evaluation of our technique
by expanding our test set with more real-world examples and
comparing against more recovery methods, such as those in
IDA Pro [17], CMU’s Binary Analysis Platform [9], and other
research works like X-Force [36]. Expanding both our test
set and comparison space would give us greater confidence in
the validity and effectiveness of our technique.

Third, we consider possible enhancements to improve scal-
ability, by addressing performance overheads in execution
time and memory. Regarding memory footprint, we can refac-
tor our codebase to utilize a database approach to saving and
restoring execution contexts, allowing us to eliminate memory
overhead that may arise from unnecessary duplication during
backup and restore steps. Regarding execution time, if the
quota system can be rigorously re-examined, we may be able
to minimize the number of search paths for indirect branches
and reduce the total execution time. Additionally, because
forced execution is fundamentally a graph traversal, we may
also be able to introduce speedup by designing a parallelized
version of the algorithm.

Finally, to build upon this work and truly examine its poten-
tial impact on broader-scale firmware analysis, we intend to
enhance the existing prototype to produce graphs that can be
incorporated into more sophisticated techniques, such as bi-
nary similarity analysis or data flow analysis. Examining and
comparing the results of such techniques when using CFGs
generated using various recovery methods can give insight
into how firmware analysis might benefit from enhancing
intermediate analyses like control flow graph recovery with
hardware awareness.

8 Conclusion

In this paper, we have presented FFXE, our prototype for a
modified form of forced execution designed to address indi-
rect branches whose targets are dependent on volatile memory
by saving and restoring execution contexts on volatile mem-
ory accesses. We have tested our prototype on a test set of
36 example images, 32 of which contain manually verified
functions that rely on the callback registration pattern. We
compared our results against a re-implementation of the orig-
inal forced execution algorithm, as well as the default CFG
recovery methods employed by the popular software analysis
frameworks angr and Ghidra. We find that in all 32 cases,
we are able to meaningfully locate the registered callback

functions where other techniques fail to do so. This gives us
confidence that our implementation of volatile-aware forced
execution is a viable solution to this class of indirection, which
appears commonly in embedded firmware binaries. We have
found that our tool has potential for improvement, but that
the underlying algorithm is conceptually simple enough that
other tools may benefit from incorporating this technique into
their own dynamic recovery algorithms. We hope that our
work will enable the application of sophisticated software
analysis techniques to firmware and ultimately lead to more
secure embedded systems.
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Appendix A Tabulated Data and Additional Figures
Note that additional tables and visualizations can be found on our Github at https://github.com/rchtsang/ffxe/tests/analysis.

Table 4: Real-World Test Results

Firmware angr_cnnctd angr_emu angr_fast ffxe ghidra_cnnctd ghidra_simple

BCM20702A1
blocks 32805 0 44932 13454 9682 37148
edges 51397 0 79441 22242 14786 57788

chargehr_18_128
blocks 20778 6479 23763 1640 6764 22561
edges 33377 12260 44102 2637 10114 35169

chargehr_18_32
blocks 20040 6454 23140 2574 6629 21556
edges 31240 11869 43202 4105 9836 33370

flex_7_64_flash
blocks 13061 4656 18881 4698 4783 14162
edges 20538 8542 31230 7686 6952 21678

flex_7_81_flash
blocks 13286 4666 19755 4712 4793 14210
edges 20900 8562 32418 7709 6968 21741

flex_7_88_flash
blocks 13061 4656 18881 4698 4783 14162
edges 20538 8542 31230 7686 6952 21678

switchmate_bright_1_46
blocks 6679 0 7792 6803 3492 7599
edges 11328 0 14521 11492 5370 12013

switchmate_bright_2_9_11
blocks 6610 0 7756 6761 3756 7455
edges 11264 0 14703 11456 5768 11778

switchmate_light_2_21
blocks 1254 1072 1857 1299 1001 1673
edges 1930 1793 3201 2103 1437 2439

switchmate_light_2_99_16
blocks 3823 2459 5206 4129 2436 5148
edges 5751 4349 9077 6732 3755 8007

https://github.com/rchtsang/ffxe/tests/analysis
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